871 research outputs found

    Hierarchical Wigner Crystal at the Edge of Quantum Hall Bar

    Full text link
    We show that quasiholes persist near the edge of incompressible Quantum Hall state forming a Wigner structure. The average density of quasiholes is fixed by electrostatics and decreases slowly with increasing distance from the edge. As we see from elementary reasoning, their specific arrangement can not be a regular Wigner lattice and shows a complex hierarchical structure of dislocations.Comment: LaTEX file. Ps figures upon reques

    Voltage-induced Shapiro steps in a superconducting multi-terminal structure

    Full text link
    When a superconducting tunnel junction at a finite voltage is irradiated with microwaves, the interplay between the alternating Josephson current and the ac field gives rise to steps in the dc current known as Shapiro steps. In this work we predict that in a mesoscopic structure connected to several superconducting terminals one can induce Shapiro-like steps in the absence of any external radiation simply by tuning the voltages of the leads. To illustrate this effect we make quantitative predictions for a three-terminal structure which comprises a diffusive superconductor-normal metal-superconductor junction and a tunneling probe, a set-up which can be realized experimentally.Comment: revtex4, 5 pages, 5 figures, to appear in Phys. Rev.

    Inelastic electron relaxation rates caused by Spin M/2 Kondo Impurities

    Full text link
    We study a spin S=M/2--Kondo system coupled to electrons in an arbitrary nonequilibrium situation above Kondo temperature. Coupling to hot electrons leads to an increased inverse lifetime of pseudo particles, related to the Korringa width. This in turn is responsible for the increased inelastic relaxation rates of the electronic system. The rates are related to spin--spin correlation functions which are determined using a projection operator formalism. The results generalize recent findings for S=1/2--Kondo impurities which have been used to describe energy relaxation experiments in disordered mesoscopic wires.Comment: Brief Report, 4 page

    Measuring the distribution of current fluctuations through a Josephson junction with very short current pulses

    Full text link
    We propose to probe the distribution of current fluctuations by means of the escape probability histogram of a Josephson junction (JJ), obtained using very short bias current pulses in the adiabatic regime, where the low-frequency component of the current fluctuations plays a crucial role. We analyze the effect of the third cumulant on the histogram in the small skewness limit, and address two concrete examples assuming realistic parameters for the JJ. In the first one we study the effects due to fluctuations produced by a tunnel junction, finding that the signature of higher cumulants can be detected by taking the derivative of the escape probability with respect to current. In such a realistic situation, though, the determination of the whole distribution of current fluctuations requires an amplification of the cumulants. As a second example we consider magnetic flux fluctuations acting on a SQUID produced by a random telegraph source of noise.Comment: 6 pages, 6 figures; final versio

    Non-Abelian phases, charge pumping, and quantum computation with Josephson junctions

    Full text link
    Non-Abelian geometric phases can be generated and detected in certain superconducting nanocircuits. Here we consider an example where the holonomies are related to the adiabatic charge dynamics of the Josephson network. We demonstrate that such a device can be applied both for adiabatic charge pumping and as an implementation of a quantum computer.Comment: 11 pages RevTex, 3 figures in eps format, revised versio

    Nonequilibrium Electron Distribution in Presence of Kondo Impurities

    Full text link
    We study the energy relaxation of quasiparticles in voltage biased mesoscopic wires in presence of magnetic impurities. The renormalization of the exchange interaction of Kondo impurities coupled to conduction electrons is extended to the case of a nonequilibrium electron distribution, which is determined self-consistently from a Boltzmann equation with a collision term due to Kondo impurity mediated electron-electron scattering. The approach leads to predictions in quantitative agreement with recent experiments by Pothier et al. [Phys. Rev. Lett. 79, 3490 (1997)].Comment: 4 pages, 3 figure

    Occupational lead neurotoxicity: Improvement in behavioural effects after reduction of exposure.

    Full text link
    To evaluate critical exposure levels and the reversibility of lead neurotoxicity a group of lead exposed foundry workers and an unexposed reference population were followed up for three years. During this period, tests designed to monitor neurobehavioural function and lead dose were administered. Evaluations of 160 workers during the first year showed dose dependent decrements in mood, visual/motor performance, memory, and verbal concept formation. Subsequently, an improvement in the hygienic conditions at the plant resulted in striking reductions in blood lead concentrations over the following two years. Attendant improvement in indices of tension (20% reduction), anger (18%), depression (26%), fatigue (27%), and confusion (13%) was observed. Performance on neurobehavioural testing generally correlated best with integrated dose estimates derived from blood lead concentrations measured periodically over the study period; zinc protoporphyrin levels were less well correlated with function. This investigation confirms the importance of compliance with workplace standards designed to lower exposures to ensure that individual blood lead concentrations remain below 50 micrograms/dl

    Probing interactions in mesoscopic gold wires

    Full text link
    We have measured in gold wires the energy exchange rate between quasiparticles, the phase coherence time of quasiparticles and the resistance vs. temperature, in order to probe the interaction processes which are relevant at low temperatures. We find that the energy exchange rate is higher than expected from the theory of electron-electron interactions, and that it has a different energy dependence. The dephasing time is constant at temperatures between 8 K and 0.5 K, and it increases below 0.5 K. The magnetoresistance is negative at large field scales, and the resistance decreases logarithmically with increasing temperatures, indicating the presence of magnetic impurities, probably Fe. Whereas resistivity and phase coherence measurements can be attributed to magnetic impurities, the question is raised whether these magnetic impurities could also mediate energy exchanges between quasiparticles.Comment: latex pothier.tex, 12 files, 15 pages in: Proceedings of the NATO Advanced Research Workshop on Size Dependent Magnetic Scattering, Pesc, Hungary, May 28 - June 1st, 2000 Chandrasekhar V., Van Haesendonck C. eds (Kluwer, 2001) [SPEC-S00/083

    Frequency-Dependent Shot Noise as a Probe of Electron-Electron Interaction in Mesoscopic Diffusive Contacts

    Full text link
    The frequency-dependent shot noise in long and narrow mesoscopic diffusive contacts is numerically calculated. The case of arbitrarily strong electron-electron scattering and zero temperature of electrodes is considered. For all voltages, the noise increases with frequency and tends to finite values. These limiting values are larger than the Poissonian noise and increase nearly as voltage to power 4/3. This allows one to experimentally determine the parameters of electron-electron interaction.Comment: 3 pages, RevTeX, 3 eps figure

    Arrays of Josephson junctions in an environment with vanishing impedance

    Full text link
    The Hamiltonian operator for an unbiased array of Josephson junctions with gate voltages is constructed when only Cooper pair tunnelling and charging effects are taken into account. The supercurrent through the system and the pumped current induced by changing the gate voltages periodically are discussed with an emphasis on the inaccuracies in the Cooper pair pumping. Renormalisation of the Hamiltonian operator is used in order to reliably parametrise the effects due to inhomogeneity in the array and non-ideal gating sequences. The relatively simple model yields an explicit, testable prediction based on three experimentally motivated and determinable parameters.Comment: 13 pages, 9 figures, uses RevTeX and epsfig, Revised version, Better readability and some new result
    • …
    corecore